Copied to
clipboard

?

G = C42.154D10order 320 = 26·5

154th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.154D10, C10.302- (1+4), C20⋊Q837C2, C4⋊C4.210D10, C42.C210D5, (C4×Dic10)⋊49C2, D10⋊Q8.3C2, C4.Dic1036C2, C422D5.1C2, Dic53Q837C2, (C2×C20).602C23, (C4×C20).199C22, (C2×C10).240C24, Dic5.19(C4○D4), Dic5.Q835C2, C4⋊Dic5.316C22, C22.261(C23×D5), D10⋊C4.42C22, C54(C22.35C24), (C2×Dic5).270C23, (C4×Dic5).236C22, (C22×D5).105C23, C2.59(D4.10D10), C2.31(Q8.10D10), (C2×Dic10).260C22, C10.D4.162C22, C2.91(D5×C4○D4), C4⋊C4⋊D5.2C2, C4⋊C47D5.13C2, C10.202(C2×C4○D4), (C5×C42.C2)⋊13C2, (C2×C4×D5).139C22, (C5×C4⋊C4).195C22, (C2×C4).205(C22×D5), SmallGroup(320,1368)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.154D10
C1C5C10C2×C10C22×D5C2×C4×D5D10⋊Q8 — C42.154D10
C5C2×C10 — C42.154D10

Subgroups: 590 in 192 conjugacy classes, 93 normal (91 characteristic)
C1, C2 [×3], C2, C4 [×15], C22, C22 [×3], C5, C2×C4 [×7], C2×C4 [×9], Q8 [×4], C23, D5, C10 [×3], C42, C42 [×5], C22⋊C4 [×6], C4⋊C4 [×6], C4⋊C4 [×14], C22×C4, C2×Q8 [×2], Dic5 [×2], Dic5 [×6], C20 [×7], D10 [×3], C2×C10, C42⋊C2, C4×Q8 [×2], C22⋊Q8 [×2], C42.C2, C42.C2 [×4], C422C2 [×4], C4⋊Q8, Dic10 [×4], C4×D5 [×2], C2×Dic5 [×7], C2×C20 [×7], C22×D5, C22.35C24, C4×Dic5 [×5], C10.D4 [×10], C4⋊Dic5 [×4], D10⋊C4 [×6], C4×C20, C5×C4⋊C4 [×6], C2×Dic10 [×2], C2×C4×D5, C4×Dic10, C422D5, Dic53Q8, C20⋊Q8, Dic5.Q8 [×3], C4.Dic10, C4⋊C47D5, D10⋊Q8 [×2], C4⋊C4⋊D5 [×3], C5×C42.C2, C42.154D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2- (1+4) [×2], C22×D5 [×7], C22.35C24, C23×D5, Q8.10D10, D5×C4○D4, D4.10D10, C42.154D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 146 11 156)(2 111 12 101)(3 148 13 158)(4 113 14 103)(5 150 15 160)(6 115 16 105)(7 152 17 142)(8 117 18 107)(9 154 19 144)(10 119 20 109)(21 151 31 141)(22 116 32 106)(23 153 33 143)(24 118 34 108)(25 155 35 145)(26 120 36 110)(27 157 37 147)(28 102 38 112)(29 159 39 149)(30 104 40 114)(41 69 51 79)(42 136 52 126)(43 71 53 61)(44 138 54 128)(45 73 55 63)(46 140 56 130)(47 75 57 65)(48 122 58 132)(49 77 59 67)(50 124 60 134)(62 81 72 91)(64 83 74 93)(66 85 76 95)(68 87 78 97)(70 89 80 99)(82 139 92 129)(84 121 94 131)(86 123 96 133)(88 125 98 135)(90 127 100 137)
(1 52 26 99)(2 100 27 53)(3 54 28 81)(4 82 29 55)(5 56 30 83)(6 84 31 57)(7 58 32 85)(8 86 33 59)(9 60 34 87)(10 88 35 41)(11 42 36 89)(12 90 37 43)(13 44 38 91)(14 92 39 45)(15 46 40 93)(16 94 21 47)(17 48 22 95)(18 96 23 49)(19 50 24 97)(20 98 25 51)(61 111 137 157)(62 158 138 112)(63 113 139 159)(64 160 140 114)(65 115 121 141)(66 142 122 116)(67 117 123 143)(68 144 124 118)(69 119 125 145)(70 146 126 120)(71 101 127 147)(72 148 128 102)(73 103 129 149)(74 150 130 104)(75 105 131 151)(76 152 132 106)(77 107 133 153)(78 154 134 108)(79 109 135 155)(80 156 136 110)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 30 31 40)(22 39 32 29)(23 28 33 38)(24 37 34 27)(25 26 35 36)(41 99 51 89)(42 88 52 98)(43 97 53 87)(44 86 54 96)(45 95 55 85)(46 84 56 94)(47 93 57 83)(48 82 58 92)(49 91 59 81)(50 100 60 90)(61 68 71 78)(62 77 72 67)(63 66 73 76)(64 75 74 65)(69 80 79 70)(101 144 111 154)(102 153 112 143)(103 142 113 152)(104 151 114 141)(105 160 115 150)(106 149 116 159)(107 158 117 148)(108 147 118 157)(109 156 119 146)(110 145 120 155)(121 140 131 130)(122 129 132 139)(123 138 133 128)(124 127 134 137)(125 136 135 126)

G:=sub<Sym(160)| (1,146,11,156)(2,111,12,101)(3,148,13,158)(4,113,14,103)(5,150,15,160)(6,115,16,105)(7,152,17,142)(8,117,18,107)(9,154,19,144)(10,119,20,109)(21,151,31,141)(22,116,32,106)(23,153,33,143)(24,118,34,108)(25,155,35,145)(26,120,36,110)(27,157,37,147)(28,102,38,112)(29,159,39,149)(30,104,40,114)(41,69,51,79)(42,136,52,126)(43,71,53,61)(44,138,54,128)(45,73,55,63)(46,140,56,130)(47,75,57,65)(48,122,58,132)(49,77,59,67)(50,124,60,134)(62,81,72,91)(64,83,74,93)(66,85,76,95)(68,87,78,97)(70,89,80,99)(82,139,92,129)(84,121,94,131)(86,123,96,133)(88,125,98,135)(90,127,100,137), (1,52,26,99)(2,100,27,53)(3,54,28,81)(4,82,29,55)(5,56,30,83)(6,84,31,57)(7,58,32,85)(8,86,33,59)(9,60,34,87)(10,88,35,41)(11,42,36,89)(12,90,37,43)(13,44,38,91)(14,92,39,45)(15,46,40,93)(16,94,21,47)(17,48,22,95)(18,96,23,49)(19,50,24,97)(20,98,25,51)(61,111,137,157)(62,158,138,112)(63,113,139,159)(64,160,140,114)(65,115,121,141)(66,142,122,116)(67,117,123,143)(68,144,124,118)(69,119,125,145)(70,146,126,120)(71,101,127,147)(72,148,128,102)(73,103,129,149)(74,150,130,104)(75,105,131,151)(76,152,132,106)(77,107,133,153)(78,154,134,108)(79,109,135,155)(80,156,136,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,30,31,40)(22,39,32,29)(23,28,33,38)(24,37,34,27)(25,26,35,36)(41,99,51,89)(42,88,52,98)(43,97,53,87)(44,86,54,96)(45,95,55,85)(46,84,56,94)(47,93,57,83)(48,82,58,92)(49,91,59,81)(50,100,60,90)(61,68,71,78)(62,77,72,67)(63,66,73,76)(64,75,74,65)(69,80,79,70)(101,144,111,154)(102,153,112,143)(103,142,113,152)(104,151,114,141)(105,160,115,150)(106,149,116,159)(107,158,117,148)(108,147,118,157)(109,156,119,146)(110,145,120,155)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126)>;

G:=Group( (1,146,11,156)(2,111,12,101)(3,148,13,158)(4,113,14,103)(5,150,15,160)(6,115,16,105)(7,152,17,142)(8,117,18,107)(9,154,19,144)(10,119,20,109)(21,151,31,141)(22,116,32,106)(23,153,33,143)(24,118,34,108)(25,155,35,145)(26,120,36,110)(27,157,37,147)(28,102,38,112)(29,159,39,149)(30,104,40,114)(41,69,51,79)(42,136,52,126)(43,71,53,61)(44,138,54,128)(45,73,55,63)(46,140,56,130)(47,75,57,65)(48,122,58,132)(49,77,59,67)(50,124,60,134)(62,81,72,91)(64,83,74,93)(66,85,76,95)(68,87,78,97)(70,89,80,99)(82,139,92,129)(84,121,94,131)(86,123,96,133)(88,125,98,135)(90,127,100,137), (1,52,26,99)(2,100,27,53)(3,54,28,81)(4,82,29,55)(5,56,30,83)(6,84,31,57)(7,58,32,85)(8,86,33,59)(9,60,34,87)(10,88,35,41)(11,42,36,89)(12,90,37,43)(13,44,38,91)(14,92,39,45)(15,46,40,93)(16,94,21,47)(17,48,22,95)(18,96,23,49)(19,50,24,97)(20,98,25,51)(61,111,137,157)(62,158,138,112)(63,113,139,159)(64,160,140,114)(65,115,121,141)(66,142,122,116)(67,117,123,143)(68,144,124,118)(69,119,125,145)(70,146,126,120)(71,101,127,147)(72,148,128,102)(73,103,129,149)(74,150,130,104)(75,105,131,151)(76,152,132,106)(77,107,133,153)(78,154,134,108)(79,109,135,155)(80,156,136,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,30,31,40)(22,39,32,29)(23,28,33,38)(24,37,34,27)(25,26,35,36)(41,99,51,89)(42,88,52,98)(43,97,53,87)(44,86,54,96)(45,95,55,85)(46,84,56,94)(47,93,57,83)(48,82,58,92)(49,91,59,81)(50,100,60,90)(61,68,71,78)(62,77,72,67)(63,66,73,76)(64,75,74,65)(69,80,79,70)(101,144,111,154)(102,153,112,143)(103,142,113,152)(104,151,114,141)(105,160,115,150)(106,149,116,159)(107,158,117,148)(108,147,118,157)(109,156,119,146)(110,145,120,155)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126) );

G=PermutationGroup([(1,146,11,156),(2,111,12,101),(3,148,13,158),(4,113,14,103),(5,150,15,160),(6,115,16,105),(7,152,17,142),(8,117,18,107),(9,154,19,144),(10,119,20,109),(21,151,31,141),(22,116,32,106),(23,153,33,143),(24,118,34,108),(25,155,35,145),(26,120,36,110),(27,157,37,147),(28,102,38,112),(29,159,39,149),(30,104,40,114),(41,69,51,79),(42,136,52,126),(43,71,53,61),(44,138,54,128),(45,73,55,63),(46,140,56,130),(47,75,57,65),(48,122,58,132),(49,77,59,67),(50,124,60,134),(62,81,72,91),(64,83,74,93),(66,85,76,95),(68,87,78,97),(70,89,80,99),(82,139,92,129),(84,121,94,131),(86,123,96,133),(88,125,98,135),(90,127,100,137)], [(1,52,26,99),(2,100,27,53),(3,54,28,81),(4,82,29,55),(5,56,30,83),(6,84,31,57),(7,58,32,85),(8,86,33,59),(9,60,34,87),(10,88,35,41),(11,42,36,89),(12,90,37,43),(13,44,38,91),(14,92,39,45),(15,46,40,93),(16,94,21,47),(17,48,22,95),(18,96,23,49),(19,50,24,97),(20,98,25,51),(61,111,137,157),(62,158,138,112),(63,113,139,159),(64,160,140,114),(65,115,121,141),(66,142,122,116),(67,117,123,143),(68,144,124,118),(69,119,125,145),(70,146,126,120),(71,101,127,147),(72,148,128,102),(73,103,129,149),(74,150,130,104),(75,105,131,151),(76,152,132,106),(77,107,133,153),(78,154,134,108),(79,109,135,155),(80,156,136,110)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,30,31,40),(22,39,32,29),(23,28,33,38),(24,37,34,27),(25,26,35,36),(41,99,51,89),(42,88,52,98),(43,97,53,87),(44,86,54,96),(45,95,55,85),(46,84,56,94),(47,93,57,83),(48,82,58,92),(49,91,59,81),(50,100,60,90),(61,68,71,78),(62,77,72,67),(63,66,73,76),(64,75,74,65),(69,80,79,70),(101,144,111,154),(102,153,112,143),(103,142,113,152),(104,151,114,141),(105,160,115,150),(106,149,116,159),(107,158,117,148),(108,147,118,157),(109,156,119,146),(110,145,120,155),(121,140,131,130),(122,129,132,139),(123,138,133,128),(124,127,134,137),(125,136,135,126)])

Matrix representation G ⊆ GL8(𝔽41)

902300000
090230000
903200000
090320000
000037251
00003192322
000072134
00004012618
,
103900000
010390000
104000000
010400000
000017402221
0000124127
000000185
000000123
,
12928130000
121128240000
151540120000
262329300000
000089624
000016323311
0000356331
00002733219
,
12928130000
354017130000
27142910000
121411120000
00002732215
00003892430
00003435112
0000182335

G:=sub<GL(8,GF(41))| [9,0,9,0,0,0,0,0,0,9,0,9,0,0,0,0,23,0,32,0,0,0,0,0,0,23,0,32,0,0,0,0,0,0,0,0,3,3,7,40,0,0,0,0,7,19,2,1,0,0,0,0,25,23,1,26,0,0,0,0,1,22,34,18],[1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,39,0,40,0,0,0,0,0,0,39,0,40,0,0,0,0,0,0,0,0,17,1,0,0,0,0,0,0,40,24,0,0,0,0,0,0,22,12,18,1,0,0,0,0,21,7,5,23],[1,12,15,26,0,0,0,0,29,11,15,23,0,0,0,0,28,28,40,29,0,0,0,0,13,24,12,30,0,0,0,0,0,0,0,0,8,16,35,27,0,0,0,0,9,32,6,33,0,0,0,0,6,33,33,21,0,0,0,0,24,11,1,9],[1,35,27,12,0,0,0,0,29,40,14,14,0,0,0,0,28,17,29,11,0,0,0,0,13,13,1,12,0,0,0,0,0,0,0,0,27,38,34,1,0,0,0,0,32,9,35,8,0,0,0,0,21,24,11,23,0,0,0,0,5,30,2,35] >;

50 conjugacy classes

class 1 2A2B2C2D4A4B4C···4H4I4J4K4L4M···4Q5A5B10A···10F20A···20L20M···20T
order12222444···444444···45510···1020···2020···20
size111120224···41010101020···20222···24···48···8

50 irreducible representations

dim1111111111122224444
type++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D102- (1+4)Q8.10D10D5×C4○D4D4.10D10
kernelC42.154D10C4×Dic10C422D5Dic53Q8C20⋊Q8Dic5.Q8C4.Dic10C4⋊C47D5D10⋊Q8C4⋊C4⋊D5C5×C42.C2C42.C2Dic5C42C4⋊C4C10C2C2C2
# reps11111311231242122444

In GAP, Magma, Sage, TeX

C_4^2._{154}D_{10}
% in TeX

G:=Group("C4^2.154D10");
// GroupNames label

G:=SmallGroup(320,1368);
// by ID

G=gap.SmallGroup(320,1368);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,555,100,1571,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽